An affinity-based new local distance function and similarity measure for kNN algorithm

نویسندگان

  • Gautam Bhattacharya
  • Koushik Ghosh
  • Ananda S. Chowdhury
چکیده

In this paper, we propose a modified version of the k-nearest neighbor (kNN) algorithm. We first introduce a new affinity function for distance measure between a test point and a training point which is an approach based on local learning. A new similarity function using this affinity function is proposed next for the classification of the test patterns. The widely used convention of k, i.e., k = [ p N] is employed, where N is the number of data used for training purpose. The proposed modified kNN algorithm is applied on fifteen numerical datasets from the UCI machine learning data repository. Both 5-fold and 10-fold cross-validations are used. The average classification accuracy, obtained from our method is found to exceed some well-known clustering algorithms. 2011 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

Text Document Clustering based on Phrase

Affinity propagation (AP) was recently introduced as an unsupervised learning algorithm for exemplar based clustering. In this paper novel text document clustering algorithm has been developed based on vector space model, phrases and affinity propagation clustering algorithm. Proposed algorithm can be called Phrase affinity clustering (PAC). PAC first finds the phrase by ukkonen suffix tree con...

متن کامل

A partition-based algorithm for clustering large-scale software systems

Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012